DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, this will not stop me, Only God and death can..........
DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai), INDIA, worlddrugtracker, 29Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK PHARMA at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.8 Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
n, सुकून उतना ही देना प्रभू, जितने से जिंदगी चल जाये।औकात बस इतनी देना,कि औरों का भला हो जाये।...........P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.

Sunday, 12 June 2016

GENISTEIN

Genistein.svg
Genistein
5,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; Baichanin A; Bonistein; 4’,5,7-Trihydroxyisoflavone; GeniVida; Genisteol; NSC 36586; Prunetol; Sophoricol;
 
CAS Number:446-72-0
  BIO-300; G-2535; PTI-G-4660; SIPI-9764-I; PTIG-4660; SIPI-9764I 
Molecular form.:C₁₅H₁₀O₅
Appearance:Light Tan to Light Yellow Solid
Melting Point:>277°C (dec.)
Mol. Weight:270.24
Genistein , an isoflavone found in many Fabaceae plants and important non-nutritional constituent of soybeans (Glycine max Merill), is a well-known plant metabolite from phenylpropanoid pathway, chiefly because of its presence in numerous phytoestrogenic dietary supplements. In fact, the compound also strives for higher medicinal status, undergoing dozens of clinical trials for various ailments, from osteoporosis to cancer
IR (KBr, cm–1; inter alia): 3411, 3104, 1651, 1615, 1570, 1519, 1504, 1424, 1361, 1309, 1202, 1179, 1145, 1043, 911, 840, 790.
1H NMR (200 MHz, THF-d8), δ (ppm): 6.17 (d, J = 2,2 Hz, 1H); 6.26 (d, J = 2,2 Hz, 1H); 6.78 (m, 2H); 7.41 (m, 2H); 8.02 (s, 1H); 8.50 (bs, 1H); 9.34 (bs, 1H); 13.02 (s, 1H).
13C NMR (THF-d8), δ (ppm): 94.13; 99.73; 106.20; 115.82; 122.95; 124.17; 130.84; 153.78; 158.73; 159.08; 164.24; 165.16; 181.46.
 
An EGFR/DNA topoisomerase II inhibitor potentially for the treatment of bladder cancer and prostate cancer.
NMR
Genistein; CAS: 446-72-0
SEE https://www.google.com/patents/EP2373326A1?cl=en
Genistein is an angiogenesis inhibitor and a phytoestrogen and belongs to the category of isoflavones. Genistein was first isolated in 1899 from the dyer's broom, Genista tinctoria; hence, the chemical name. The compound structure was established in 1926, when it was found to be identical with prunetol. It was chemically synthesized in 1928.[1]

Natural occurrences

Isoflavones such as genistein and daidzein are found in a number of plants including lupinfava beanssoybeanskudzu, andpsoralea being the primary food source,[2][3] also in the medicinal plantsFlemingia vestita[4] and F. macrophylla,[5][6] and coffee.[7] It can also be found in Maackia amurensis cell cultures.[8]

Extraction and purification

Most of the isoflavones in plants are present in a glycosylated form. The unglycosylated aglycones can be obtained through various means such as treatment with the enzyme β-glucosidase, acid treatment of soybeans followed by solvent extraction, or by chemical synthesis.[9] Acid treatment is a harsh method as concentrated inorganic acids are used. Both enzyme treatment and chemical synthesis are costly. A more economical process consisting of fermentation for in situ production of β-glucosidase to isolate genistein has been recently investigated.[10]

Biological effects

Besides functioning as antioxidant and anthelmintic, many isoflavones have been shown to interact with animal and human estrogen receptors, causing effects in the body similar to those caused by the hormone estrogenIsoflavones also produce non-hormonal effects.

Molecular function

Genistein influences multiple biochemical functions in living cells:

Activation of PPARs

Isoflavones genistein and daidzein bind to and transactivate all three PPAR isoforms, α, δ, and γ.[18] For example, membrane-bound PPARγ-binding assay showed that genistein can directly interact with the PPARγ ligand binding domain and has a measurable Ki of 5.7 mM.[19] Gene reporter assays showed that genistein at concentrations between 1 and 100 uM activated PPARs in a dose dependent way in KS483 mesenchymal progenitor cells, breast cancer MCF-7 cells, T47D cells and MDA-MD-231 cells, murine macrophage-like RAW 264.7 cells, endothelial cells and in Hela cells. Several studies have shown that both ERs and PPARs influenced each other and therefore induce differential effects in a dose-dependent way. The final biological effects of genistein are determined by the balance among these pleiotrophic actions.[18][20][21]

Tyrosine kinase inhibitor

The main known activity of genistein is tyrosine kinase inhibitor, mostly of epidermal growth factor receptor (EGFR). Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades.

Redox-active — not only antioxidant

Genistein may act as direct antioxidant, similar to many other isoflavones, and thus may alleviate damaging effects of free radicals in tissues.[22][23]
The same molecule of genistein, similar to many other isoflavones, by generation of free radicals poison topoisomerase II, an enzyme important for maintaining DNA stability.[24][25][26]
Human cells turn on beneficial, detoxyfying Nrf2 factor in response to genistein insult. This pathway may be responsible for observed health maintaining properities of small doses of genistein.[27]

Anthelmintic

The root-tuber peel extract of the leguminous plant Felmingia vestita is the traditional anthelmitic of the Khasi tribes of India. While investigating its anthelmintic activity, genistein was found to be the major isoflavone responsible for the deworming property.[4][28] Genistein was subsequently demonstrated to be highly effective against intestinal parasitessuch as the poultry cestode Raillietina echinobothrida,[28] the pork trematode Fasciolopsis buski,[29] and the sheep liver fluke Fasciola hepatica.[30] It exerts its anthelmintic activity by inhibiting the enzymes of glycolysis and glycogenolysis,[31][32] and disturbing the Ca2+ homeostasis and NO activity in the parasites.[33][34] It has also been investigated inhuman tapeworms such as Echinococcus multilocularis and E. granulosus metacestodes that genistein and its derivatives, Rm6423 and Rm6426, are potent cestocides.[35]

Atherosclerosis

Genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis.[36]

Cancer links

Genistein and other isoflavones have been identified as angiogenesis inhibitors, and found to inhibit the uncontrolled cell growth of cancer, most likely by inhibiting the activity of substances in the body that regulate cell division and cell survival (growth factors). Various studies have found that moderate doses of genistein have inhibitory effects on cancersof the prostate,[37][38] cervix,[39] brain,[40] breast[37][41][42] and colon.[16] It has also been shown that genistein makes some cells more sensitive to radio-therapy.;[43] although, timing of phytoestrogen use is also important. [43]
Genistein's chief method of activity is as a tyrosine kinase inhibitor. Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades. Inhibition of DNA topoisomerase II also plays an important role in the cytotoxic activity of genistein.[25][44] Genistein has been used to selectively target pre B-cells via conjugation with an anti-CD19 antibody.[45]
Studies on rodents have found genistein to be useful in the treatment of leukemia, and that it can be used in combination with certain other antileukemic drugs to improve their efficacy.[46]

Estrogen receptor — more cancer links

Due to its structure similarity to 17β-estradiol (estrogen), genistein can compete with it and bind to estrogen receptors. However, genistein shows much higher affinity towardestrogen receptor β than toward estrogen receptor α.[47]
Data from in vitro and in vivo research confirms that genistein can increase rate of growth of some ER expressing breast cancers. Genistein was found to increase the rate of proliferation of estrogen-dependent breast cancer when not cotreated with an estrogen antagonist.[48][49][50] It was also found to decrease efficiency of tamoxifen and letrozole - drugs commonly used in breast cancer therapy.[51][52] Genistein was found to inhibit immune response towards cancer cells allowing their survival.[53]

Effects in males

Isoflavones can act like estrogen, stimulating development and maintenance of female characteristics, or they can block cells from using cousins of estrogen. In vitro studies have shown genistein to induce apoptosis of testicular cells at certain levels, thus raising concerns about effects it could have on male fertility;[54] however, a recent study found that isoflavones had "no observable effect on endocrine measurements, testicular volume or semen parameters over the study period." in healthy males given isoflavone supplements daily over a 2-month period.[55]

Carcinogenic and toxic potential

Genistein was, among other flavonoids, found to be a strong topoisomerase inhibitor, similarly to some chemotherapeutic anticancer drugs ex. etoposide and doxorubicin.[24][56]In high doses it was found to be strongly toxic to normal cells.[57] This effect may be responsible for both anticarcinogenic and carcinogenic potential of the substance.[26][58] It was found to deteriorate DNA of cultured blood stem cells, what may lead to leukemia.[59] Genistein among other flavonoids is suspected to increase risk of infant leukemia when consumed during pregnancy.[60][61]

Sanfilippo syndrome treatment

Genistein decreases pathological accumulation of glycosaminoglycans in Sanfilippo syndromeIn vitro animal studies and clinical experiments suggest that the symptoms of the disease may be alleviated by adequate dose of genistein.[62] Genistein was found to also possess toxic properties toward brain cells.[57] Among many pathways stimulated by genistein, autophagy may explain the observed efficiency of the substance as autophagy is significantly impaired in the disease.[63][64]

Related compounds

Glycosides

Genistin is the 7-O-beta-D-glucoside of genistein.

Acetylated compounds

Wighteone is the 6-isopentenyl genistein (6-prenyl-5,7,4'-trihydroxyisoflavone)[citation needed]

Pharmaceutical derivatives

  • KBU2046 under investigation for prostate cancer.[65][66]
  • B43-genistein, an anti-CD19 antibody linked to genistein e.g. for leukemia.[67]
  • Genistein has two known synthesis routes: deoxybenzoin route and chalcone route. Deoxybenzoin route uses friedel-craft reaction, and chalcone route uses aldol condensation as shown in figure 2. Developing synthesis of genistein allows the access to the affordable therapy as well as mass production of commercial genistein supplements. However, it would be recommended to consult with the health care provider and discuss the pros and cons before the use since the effects of genistein on human body are not fully understood yet as discussed above.


MEDIUM_10555_2010_9238_Fig2_HTML.jpg
Figure 2. Synthesis of genistein via deoxybenzoin route or chalcone route. 10

https://chemprojects263sp11.wikispaces.com/genistein

Paper
Identification of Benzopyran-4-one Derivatives (Isoflavones) as Positive Modulators of GABAA Receptors
ChemMedChem (2011), 6, (8), 1340-1346

PATENT
By Achmatowicz, Osman et al
From Pol., 204473
STR1

References

  1.  Walter, E. D. (1941). "Genistin (an Isoflavone Glucoside) and its Aglucone, Genistein, from Soybeans". Journal of the American Chemical Society 63 (12): 3273–76.doi:10.1021/ja01857a013.
  2.  Coward, Lori; Barnes, Neil C.; Setchell, Kenneth D. R.; Barnes, Stephen (1993). "Genistein, daidzein, and their β-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets". Journal of Agricultural and Food Chemistry 41 (11): 1961–7. doi:10.1021/jf00035a027.
  3. Jump up^ Kaufman, Peter B.; Duke, James A.; Brielmann, Harry; Boik, John; Hoyt, James E. (1997). "A Comparative Survey of Leguminous Plants as Sources of the Isoflavones, Genistein and Daidzein: Implications for Human Nutrition and Health". The Journal of Alternative and Complementary Medicine 3 (1): 7–12. doi:10.1089/acm.1997.3.7.PMID 9395689.
  4. Jump up to:a b Rao, H. S. P.; Reddy, K. S. (1991). "Isoflavones from Flemingia vestita". Fitoterapia62 (5): 458.
  5. Jump up^ Rao, K.Nageswara; Srimannarayana, G. (1983). "Fleminone, a flavanone from the stems of Flemingia macrophylla". Phytochemistry 22 (10): 2287–90. doi:10.1016/S0031-9422(00)80163-6.
  6. Jump up^ Wang, Bor-Sen; Juang, Lih-Jeng; Yang, Jeng-Jer; Chen, Li-Ying; Tai, Huo-Mu; Huang, Ming-Hsing (2012). "Antioxidant and Antityrosinase Activity of Flemingia macrophylla andGlycine tomentella Roots". Evidence-Based Complementary and Alternative Medicine 2012: 1–7. doi:10.1155/2012/431081PMID 22997529.
  7. Jump up^ Alves, Rita C.; Almeida, Ivone M. C.; Casal, Susana; Oliveira, M. Beatriz P. P. (2010). "Isoflavones in Coffee: Influence of Species, Roast Degree, and Brewing Method". Journal of Agricultural and Food Chemistry 58 (5): 3002–7. doi:10.1021/jf9039205.PMID 20131840.
  8. Jump up^ Fedoreyev, S.A; Pokushalova, T.V; Veselova, M.V; Glebko, L.I; Kulesh, N.I; Muzarok, T.I; Seletskaya, L.D; Bulgakov, V.P; Zhuravlev, Yu.N (2000). "Isoflavonoid production by callus cultures of Maackia amurensis". Fitoterapia 71 (4): 365–72. doi:10.1016/S0367-326X(00)00129-5PMID 10925005.
  9. Jump up^ Prakash, Om; Saini, Neena; Tanwar, Madan P.; Moriarty, Robert M. (1995). "Hypervalent iodine in organic synthesis: α-functionalization of carbonyl compounds". Contemporary Organic Synthesis 2 (2): 121–31. doi:10.1039/CO9950200121.
  10. Jump up^ Patravale, VB; Pandit, NT (2011). "Design and optimization of a novel method for extraction of genistein"Indian Journal of Pharmaceutical Sciences 73 (2): 184–92.doi:10.4103/0250-474x.91583PMC 3267303PMID 22303062.
  11. Jump up^ Patisaul, Heather B.; Melby, Melissa; Whitten, Patricia L.; Young, Larry J. (2002). "Genistein Affects ERβ- But Not ERα-Dependent Gene Expression in the Hypothalamus".Endocrinology 143 (6): 2189–2197. doi:10.1210/endo.143.6.8843ISSN 0013-7227.
  12. Jump up^ Green, Sarah E (2015), In Vitro Comparison of Estrogenic Activities of Popular Women’s Health Botanicals
  13. Jump up^ Prossnitz, Eric R.; Barton, Matthias (2014). "Estrogen biology: New insights into GPER function and clinical opportunities". Molecular and Cellular Endocrinology 389 (1-2): 71–83.doi:10.1016/j.mce.2014.02.002ISSN 0303-7207.
  14. Jump up^ Gossner, G; Choi, M; Tan, L; Fogoros, S; Griffith, K; Kuenker, M; Liu, J (2007). "Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells". Gynecologic Oncology 105 (1): 23–30. doi:10.1016/j.ygyno.2006.11.009PMID 17234261.
  15. Jump up^ Singletary, K.; Milner, J. (2008). "Diet, Autophagy, and Cancer: A Review". Cancer Epidemiology Biomarkers & Prevention 17 (7): 1596–610. doi:10.1158/1055-9965.EPI-07-2917PMID 18628411.
  16. Jump up to:a b Nakamura, Yoshitaka; Yogosawa, Shingo; Izutani, Yasuyuki; Watanabe, Hirotsuna; Otsuji, Eigo; Sakai, Tosiyuki (2009). "A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy"Molecular Cancer 8: 100.doi:10.1186/1476-4598-8-100PMC 2784428PMID 19909554.
  17. Jump up^ Fang, Mingzhu; Chen, Dapeng; Yang, Chung S. (January 2007). "Dietary polyphenols may affect DNA methylation"The Journal of Nutrition 137 (1 Suppl): 223S–228S.PMID 17182830.
  18. Jump up to:a b Wang, Limei; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Blunder, Martina; Liu, Xin; Malainer, Clemens; Blazevic, Tina; Schwaiger, Stefan; Rollinger, Judith M.; Heiss, Elke H.; Schuster, Daniela; Kopp, Brigitte; Bauer, Rudolf; Stuppner, Hermann; Dirsch, Verena M.; Atanasov, Atanas G. (2014). "Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review"Biochemical Pharmacology 92: 73–89. doi:10.1016/j.bcp.2014.07.018PMC 4212005PMID 25083916.
  19. Jump up^ Dang, Zhi-Chao; Audinot, Valérie; Papapoulos, Socrates E.; Boutin, Jean A.; Löwik, Clemens W. G. M. (2002). "Peroxisome Proliferator-activated Receptor γ (PPARγ) as a Molecular Target for the Soy Phytoestrogen Genistein". Journal of Biological Chemistry 278(2): 962–7. doi:10.1074/jbc.M209483200PMID 12421816.
  20. Jump up^ Dang, Zhi Chao; Lowik, Clemens (2005). "Dose-dependent effects of phytoestrogens on bone". Trends in Endocrinology and Metabolism 16 (5): 207–13.doi:10.1016/j.tem.2005.05.001PMID 15922618.
  21. Jump up^ Dang, Z. C. (2009). "Dose-dependent effects of soy phyto-oestrogen genistein on adipocytes: Mechanisms of action". Obesity Reviews 10 (3): 342–9. doi:10.1111/j.1467-789X.2008.00554.xPMID 19207876.
  22. Jump up^ Han, Rui-Min; Tian, Yu-Xi; Liu, Yin; Chen, Chang-Hui; Ai, Xi-Cheng; Zhang, Jian-Ping; Skibsted, Leif H. (2009). "Comparison of Flavonoids and Isoflavonoids as Antioxidants".Journal of Agricultural and Food Chemistry 57 (9): 3780–5. doi:10.1021/jf803850p.PMID 19296660.
  23. Jump up^ Borrás, Consuelo; Gambini, Juan; López-Grueso, Raúl; Pallardó, Federico V.; Viña, Jose (2010). "Direct antioxidant and protective effect of estradiol on isolated mitochondria".Biochimica et Biophysica Acta 1802 (1): 205–11. doi:10.1016/j.bbadis.2009.09.007.PMID 19751829.
  24. Jump up to:a b Bandele, Omari J.; Osheroff, Neil (2007). "Bioflavonoids as Poisons of Human Topoisomerase IIα and IIβ"Biochemistry 46 (20): 6097–108. doi:10.1021/bi7000664.PMC 2893030PMID 17458941.
  25. Jump up to:a b Markovits, Judith; Linassier, Claude; Fossé, Philippe; Couprie, Jeanine; Pierre, Josiane; Jacquemin-Sablon, Alain; Saucier, Jean-Marie; Le Pecq, Jean-Bernard; Larsen, Annette K. (September 1989). "Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II"Cancer Research 49 (18): 5111–7.PMID 2548712.
  26. Jump up to:a b López-Lázaro, Miguel; Willmore, Elaine; Austin, Caroline A. (2007). "Cells Lacking DNA Topoisomerase IIβ are Resistant to Genistein". Journal of Natural Products 70 (5): 763–7. doi:10.1021/np060609zPMID 17411092.
  27. Jump up^ Mann, Giovanni E; Bonacasa, Barbara; Ishii, Tetsuro; Siow, Richard CM (2009). "Targeting the redox sensitive Nrf2–Keap1 defense pathway in cardiovascular disease: Protection afforded by dietary isoflavones". Current Opinion in Pharmacology 9 (2): 139–45. doi:10.1016/j.coph.2008.12.012PMID 19157984.
  28. Jump up to:a b Tandon, V.; Pal, P.; Roy, B.; Rao, H. S. P.; Reddy, K. S. (1997). "In vitro anthelmintic activity of root-tuber extract of Flemingia vestita, an indigenous plant in Shillong, India". Parasitology Research 83 (5): 492–8. doi:10.1007/s004360050286.PMID 9197399.
  29. Jump up^ Kar, Pradip K; Tandon, Veena; Saha, Nirmalendu (2002). "Anthelmintic efficacy ofFlemingia vestita: Genistein-induced effect on the activity of nitric oxide synthase and nitric oxide in the trematode parasite, Fasciolopsis buski". Parasitology International 51 (3): 249–57. doi:10.1016/S1383-5769(02)00032-6PMID 12243779.
  30. Jump up^ Toner, E.; Brennan, G. P.; Wells, K.; McGeown, J. G.; Fairweather, I. (2008). "Physiological and morphological effects of genistein against the liver fluke, Fasciola hepatica". Parasitology 135 (10): 1189–203. doi:10.1017/S0031182008004630.PMID 18771609.
  31. Jump up^ Tandon, Veena; Das, Bidyadhar; Saha, Nirmalendu (2003). "Anthelmintic efficacy ofFlemingia vestita (Fabaceae): Effect of genistein on glycogen metabolism in the cestode,Raillietina echinobothrida". Parasitology International 52 (2): 179–86. doi:10.1016/S1383-5769(03)00006-0PMID 12798931.
  32. Jump up^ Das, B.; Tandon, V.; Saha, N. (2004). "Anthelmintic efficacy of Flemingia vestita(Fabaceae): Alteration in the activities of some glycolytic enzymes in the cestode,Raillietina echinobothrida". Parasitology Research 93 (4): 253–61. doi:10.1007/s00436-004-1122-8PMID 15138892.
  33. Jump up^ Das, Bidyadhar; Tandon, Veena; Saha, Nirmalendu (2006). "Effect of isoflavone from Flemingia vestita (Fabaceae) on the Ca2+ homeostasis in Raillietina echinobothrida, the cestode of domestic fowl". Parasitology International 55 (1): 17–21.doi:10.1016/j.parint.2005.08.002PMID 16198617.
  34. Jump up^ Das, Bidyadhar; Tandon, Veena; Lyndem, Larisha M.; Gray, Alexander I.; Ferro, Valerie A. (2009). "Phytochemicals from Flemingia vestita (Fabaceae) and Stephania glabra(Menispermeaceae) alter cGMP concentration in the cestode Raillietina echinobothrida".Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 149 (3): 397–403. doi:10.1016/j.cbpc.2008.09.012PMID 18854226.
  35. Jump up^ Naguleswaran, Arunasalam; Spicher, Martin; Vonlaufen, Nathalie; Ortega-Mora, Luis M.; Torgerson, Paul; Gottstein, Bruno; Hemphill, Andrew (2006). "In Vitro Metacestodicidal Activities of Genistein and Other Isoflavones against Echinococcus multilocularis andEchinococcus granulosus"Antimicrobial Agents and Chemotherapy 50 (11): 3770–8.doi:10.1128/AAC.00578-06PMC 1635224PMID 16954323.
  36. Jump up^ Si, Hongwei; Liu, Dongmin; Si, Hongwei; Liu, Dongmin (2007). "Phytochemical Genistein in the Regulation of Vascular Function: New Insights". Current Medicinal Chemistry 14(24): 2581–9. doi:10.2174/092986707782023325PMID 17979711.
  37. Jump up to:a b Morito, Keiko; Hirose, Toshiharu; Kinjo, Junei; Hirakawa, Tomoki; Okawa, Masafumi; Nohara, Toshihiro; Ogawa, Sumito; Inoue, Satoshi; Muramatsu, Masami; Masamune, Yukito (2001). "Interaction of Phytoestrogens with Estrogen Receptors α and β". Biological & Pharmaceutical Bulletin 24 (4): 351–6. doi:10.1248/bpb.24.351PMID 11305594.
  38. Jump up^ Hwang, Ye Won; Kim, Soo Young; Jee, Sun Ha; Kim, Youn Nam; Nam, Chung Mo (2009). "Soy Food Consumption and Risk of Prostate Cancer: A Meta-Analysis of Observational Studies". Nutrition and Cancer 61 (5): 598–606.doi:10.1080/01635580902825639PMID 19838933.
  39. Jump up^ Kim, Su-Hyeon; Kim, Su-Hyeong; Kim, Yong-Beom; Jeon, Yong-Tark; Lee, Sang-Chul; Song, Yong-Sang (2009). "Genistein Inhibits Cell Growth by Modulating Various Mitogen-Activated Protein Kinases and AKT in Cervical Cancer Cells". Annals of the New York Academy of Sciences 1171: 495–500. Bibcode:2009NYASA1171..495K.doi:10.1111/j.1749-6632.2009.04899.xPMID 19723095.
  40. Jump up^ Das, Arabinda; Banik, Naren L.; Ray, Swapan K. (2009). "Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes"Cancer 116 (1): 164–76. doi:10.1002/cncr.24699PMC 3159962.PMID 19894226.
  41. Jump up^ Sakamoto, Takako; Horiguchi, Hyogo; Oguma, Etsuko; Kayama, Fujio (2010). "Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells". The Journal of Nutritional Biochemistry 21 (9): 856–64. doi:10.1016/j.jnutbio.2009.06.010PMID 19800779.
  42. Jump up^ de Lemos, Mário L (2001). "Effects of Soy Phytoestrogens Genistein and Daidzein on Breast Cancer Growth". The Annals of Pharmacotherapy 35 (9): 1118–21.doi:10.1345/aph.10257PMID 11573864.
  43. Jump up to:a b de Assis, Sonia; Hilakivi-Clarke, Leena (2006). "Timing of Dietary Estrogenic Exposures and Breast Cancer Risk". Annals of the New York Academy of Sciences 1089: 14–35. Bibcode:2006NYASA1089...14Ddoi:10.1196/annals.1386.039.PMID 17261753.
  44. Jump up^ López-Lázaro, Miguel; Willmore, Elaine; Austin, Caroline A. (2007). "Cells Lacking DNA Topoisomerase IIβ are Resistant to Genistein". Journal of Natural Products 70 (5): 763–7.doi:10.1021/np060609zPMID 17411092.
  45. Jump up^ Safa, Malek; Foon, Kenneth A.; Oldham, Robert K. (2009). "Drug Immunoconjugates". In Oldham, Robert K.; Dillman, Robert O. Principles of Cancer Biotherapy (5th ed.). pp. 451–62. doi:10.1007/978-90-481-2289-9_12ISBN 978-90-481-2277-6.
  46. Jump up^ Raynal, Noël J. M.; Charbonneau, Michel; Momparler, Louise F.; Momparler, Richard L. (2008). "Synergistic Effect of 5-Aza-2′-Deoxycytidine and Genistein in Combination Against Leukemia". Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics 17(5): 223–30. doi:10.3727/096504008786111356PMID 18980019.
  47. Jump up^ Kuiper, George G. J. M.; Lemmen, Josephine G.; Carlsson, Bo; Corton, J. Christopher; Safe, Stephen H.; van der Saag, Paul T.; van der Burg, Bart; Gustafsson, Jan-Åke (1998). "Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor β".Endocrinology 139 (10): 4252–63. doi:10.1210/endo.139.10.6216PMID 9751507.
  48. Jump up^ Ju, Young H.; Allred, Kimberly F.; Allred, Clinton D.; Helferich, William G. (2006). "Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations". Carcinogenesis 27 (6): 1292–9.doi:10.1093/carcin/bgi370PMID 16537557.
  49. Jump up^ Chen, Wen-Fang; Wong, Man-Sau (2004). "Genistein Enhances Insulin-Like Growth Factor Signaling Pathway in Human Breast Cancer (MCF-7) Cells". The Journal of Clinical Endocrinology & Metabolism 89 (5): 2351–9. doi:10.1210/jc.2003-032065.PMID 15126563.
  50. Jump up^ Yang, Xiaohe; Yang, Shihe; McKimmey, Christine; Liu, Bolin; Edgerton, Susan M.; Bales, Wesley; Archer, Linda T.; Thor, Ann D. (2010). "Genistein induces enhanced growth promotion in ER-positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and p27/kip1 downregulation". Carcinogenesis 31 (4): 695–702. doi:10.1093/carcin/bgq007.PMID 20067990.
  51. Jump up^ Helferich, W. G.; Andrade, J. E.; Hoagland, M. S. (2008). "Phytoestrogens and breast cancer: A complex story". Inflammopharmacology 16 (5): 219–26. doi:10.1007/s10787-008-8020-0PMID 18815740.
  52. Jump up^ Tonetti, Debra A.; Zhang, Yiyun; Zhao, Huiping; Lim, Sok-Bee; Constantinou, Andreas I. (2007). "The Effect of the Phytoestrogens Genistein, Daidzein, and Equol on the Growth of Tamoxifen-Resistant T47D/PKCα". Nutrition and Cancer 58 (2): 222–9.doi:10.1080/01635580701328545PMID 17640169.
  53. Jump up^ Jiang, Xinguo; Patterson, Nicole M.; Ling, Yan; Xie, Jianwei; Helferich, William G.; Shapiro, David J. (2008). "Low Concentrations of the Soy Phytoestrogen Genistein Induce Proteinase Inhibitor 9 and Block Killing of Breast Cancer Cells by Immune Cells".Endocrinology 149 (11): 5366–73. doi:10.1210/en.2008-0857PMC 2584580.PMID 18669594.
  54. Jump up^ Kumi-Diaka, James; Rodriguez, Rosanna; Goudaze, Gould (1998). "Influence of genistein (4′,5,7-trihydroxyisoflavone) on the growth and proliferation of testicular cell lines". Biology of the Cell 90 (4): 349–54. doi:10.1016/S0248-4900(98)80015-4.PMID 9800352.
  55. Jump up^ Mitchell, Julie H.; Cawood, Elizabeth; Kinniburgh, David; Provan, Anne; Collins, Andrew R.; Irvine, D. Stewart (2001). "Effect of a phytoestrogen food supplement on reproductive health in normal males". Clinical Science 100 (6): 613–8. doi:10.1042/CS20000212.PMID 11352776.
  56. Jump up^ Lutz, Werner K.; Tiedge, Oliver; Lutz, Roman W.; Stopper, Helga (2005). "Different Types of Combination Effects for the Induction of Micronuclei in Mouse Lymphoma Cells by Binary Mixtures of the Genotoxic Agents MMS, MNU, and Genistein". Toxicological Sciences 86 (2): 318–23. doi:10.1093/toxsci/kfi200PMID 15901918.
  57. Jump up to:a b Jin, Ying; Wu, Heng; Cohen, Eric M.; Wei, Jianning; Jin, Hong; Prentice, Howard; Wu, Jang-Yen (2007). "Genistein and daidzein induce neurotoxicity at high concentrations in primary rat neuronal cultures". Journal of Biomedical Science 14 (2): 275–84.doi:10.1007/s11373-006-9142-2PMID 17245525.
  58. Jump up^ Schmidt, Friederike; Knobbe, Christiane; Frank, Brigitte; Wolburg, Hartwig; Weller, Michael (2008). "The topoisomerase II inhibitor, genistein, induces G2/M arrest and apoptosis in human malignant glioma cell lines". Oncology Reports 19 (4): 1061–6.doi:10.3892/or.19.4.1061PMID 18357397.
  59. Jump up^ van Waalwijk van Doorn-Khosrovani, Sahar Barjesteh; Janssen, Jannie; Maas, Lou M.; Godschalk, Roger W. L.; Nijhuis, Jan G.; van Schooten, Frederik J. (2007). "Dietary flavonoids induce MLL translocations in primary human CD34+ cells". Carcinogenesis 28(8): 1703–9. doi:10.1093/carcin/bgm102PMID 17468513.
  60. Jump up^ Spector, Logan G.; Xie, Yang; Robison, Leslie L.; Heerema, Nyla A.; Hilden, Joanne M.; Lange, Beverly; Felix, Carolyn A.; Davies, Stella M.; Slavin, Joanne; Potter, John D.; Blair, Cindy K.; Reaman, Gregory H.; Ross, Julie A. (2005). "Maternal Diet and Infant Leukemia: The DNA Topoisomerase II Inhibitor Hypothesis: A Report from the Children's Oncology Group". Cancer Epidemiology Biomarkers & Prevention 14 (3): 651–5. doi:10.1158/1055-9965.EPI-04-0602PMID 15767345.
  61. Jump up^ Azarova, Anna M.; Lin, Ren-Kuo; Tsai, Yuan-Chin; Liu, Leroy F.; Lin, Chao-Po; Lyu, Yi Lisa (2010). "Genistein induces topoisomerase IIbeta- and proteasome-mediated DNA sequence rearrangements: Implications in infant leukemia"Biochemical and Biophysical Research Communications 399 (1): 66–71. doi:10.1016/j.bbrc.2010.07.043.PMC 3376163PMID 20638367.
  62. Jump up^ Piotrowska, Ewa; Jakóbkiewicz-Banecka, Joanna; Barańska, Sylwia; Tylki-Szymańska, Anna; Czartoryska, Barbara; Węgrzyn, Alicja; Węgrzyn, Grzegorz (2006). "Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses". European Journal of Human Genetics 14(7): 846–52. doi:10.1038/sj.ejhg.5201623PMID 16670689.
  63. Jump up^ Ballabio, A. (2009). "Disease pathogenesis explained by basic science: Lysosomal storage diseases as autophagocytic disorders". International Journal of Clinical Pharmacology and Therapeutics 47 (Suppl 1): S34–8. doi:10.5414/cpp47034.PMID 20040309.
  64. Jump up^ Settembre, Carmine; Fraldi, Alessandro; Jahreiss, Luca; Spampanato, Carmine; Venturi, Consuelo; Medina, Diego; de Pablo, Raquel; Tacchetti, Carlo; Rubinsztein, David C.; Ballabio, Andrea (2007). "A block of autophagy in lysosomal storage disorders". Human Molecular Genetics 17 (1): 119–29. doi:10.1093/hmg/ddm289PMID 17913701.
  65. Jump up^ Xu, Li; Farmer, Rebecca; Huang, Xiaoke; Pavese, Janet; Voll, Eric; Irene, Ogden; Biddle, Margaret; Nibbs, Antoinette; Valsecchi, Matias; Scheidt, Karl; Bergan, Raymond (2010). "Abstract B58: Discovery of a novel drug KBU2046 that inhibits conversion of human prostate cancer to a metastatic phenotype". Cancer Prevention Research 3 (12 Supplement): B58. doi:10.1158/1940-6207.PREV-10-B58.
  66. Jump up^ "New Drug Stops Spread of Prostate Cancer" (Press release). Northwestern University. April 3, 2012. Retrieved September 27, 2014.
  67. Jump up^ Chen, Chun-Lin; Levine, Alexandra; Rao, Asha; O'Neill, Karen; Messinger, Yoav; Myers, Dorothea E.; Goldman, Frederick; Hurvitz, Carole; Casper, James T.; Uckun, Fatih M. (1999). "Clinical Pharmacokinetics of the CD19 Receptor-Directed Tyrosine Kinase Inhibitor B43-Genistein in Patients with B-Lineage Lymphoid Malignancies". The Journal of Clinical Pharmacology 39 (12): 1248–55. doi:10.1177/00912709922012051PMID 10586390.

External links



Abstract Image
Development and scale-up of the synthetic process for genistein preparation are described. The process was designed with consideration for environmental and economical aspects and optimized in a laboratory scale. In a scale up, on every step quantity of the environmentally unfriendly substrates or solvents was reduced without compromising the quality of the final product, and the waste load was significantly diminished. The optimal duration times of the individual stages were determined, and the number of operations was reduced, leading to lowering of energy consumption. Elaborated process secures good yield and quality expected for pharmaceutical substances.

Technical Process for Preparation of Genistein

Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warsaw, Poland
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.5b00425
Publication Date (Web): June 03, 2016
Copyright © 2016 American Chemical Society
*E-mail: k.filip@ifarm.eu.

Genistein
Genistein.svg
Genistein molecule
Names
IUPAC name
5,7-Dihydroxy-3-(4-hydroxyphenyl)chromen-4-one
Other names
4',5,7-Trihydroxyisoflavone
Identifiers
CAS Number446-72-0 Yes
ChEBICHEBI:28088 Yes
ChEMBLChEMBL44 Yes
ChemSpider4444448 Yes
DrugBankDB01645 Yes
IUPHAR/BPS2826
Jmol 3D modelInteractive image
KEGGC06563 Yes
PubChem5280961
UNIIDH2M523P0H Yes
Properties
Chemical formulaC15H10O5
Molar mass270.24 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Akiyama, T., et al.: J. Biol. Chem., 262, 5592 (1987), O’Dell, T.J., et al.: Nature, 353, 588 (1991), Aharonovits, O., et al.: Biochim Biophys. Acta, 1112, 181 (1992), Platanias, L.C., et al.: J. Biol. Chem., 267, 24053 (1992), Yoshida, H., et al.: Biochim. Biophys. Acta, 1137, 321 (1992), Uckun, F.M., et al.: Science, 267, 886 (1995), Merck Index 12th ed. 4395, Huang, R.Q.; Fang, M.J.; Dillon, G.H., Mol. Brain Res. 67: 177-183 (1999)

//////BIO-300,  G-2535,  PTI-G-4660,  SIPI-9764-I,  PTIG-4660,  SIPI-9764I, Genistein, phase 2, national cancer institute
Oc1ccc(cc1)C\3=C\Oc2cc(O)cc(O)c2C/3=O

Start of the Euro 2016

Temanogrel


ChemSpider 2D Image | temanogrel | C24H28N4O4TEMANOGREL.pngimg
Temanogrel
APD 791
3-methoxy-N-[3-(2-methylpyrazol-3-yl)-4-(2-morpholinoethoxy)phenyl]benzamide
Benzamide,3-methoxy-N-[3-(1-methyl-1H-pyrazol-5-yl)-4-[2-(4-morpholinyl)ethoxy]phenyl]-
UNII:F42Z27575A
TEMANOGREL; APD791; CHEMBL1084617; UNII-F42Z27575A; 887936-68-7; 3-Methoxy-N-[3-(2-methyl-2H-pyrazol-3-yl)-4-(2-morpholin-4-yl-ethoxy)-phenyl]-benzamide;
Molecular Formula: C24H28N4O4
Molecular Weight: 436.50352 g/mol
  • Originator Arena Pharmaceuticals
  • Developer Arena Pharmaceuticals; Ildong Pharmaceutical
  • Class Antithrombotics; Small molecules
  • Mechanism of Action Serotonin 2A receptor inverse agonists
Phase I Arterial thrombosis

Most Recent Events

  • 30 Mar 2016 Arena Pharmaceuticals has patents pending for Temanogrel in 12 regions, including Brazil (Arena Pharmaceuticals 10-K; march 2016)
  • 30 Mar 2016 Arena Pharmaceuticals has patent protection for Temanogrel in 87 regions, including USA, Japan, China, Germany, France, Italy, the United Kingdom, Spain, Canada, Russia, India, Australia and South Korea
  • 01 Mar 2015 Ildong Pharmaceutical initiates enrolment in a phase I trial for Arterial thrombosis in South Korea (NCT02419820)
A 5-HT2A inverse agonist potentially for the reduction of the risk of arterial thrombosis.
APD-791
CAS No. 887936-68-7
ChemSpider 2D Image | Temanogrel hydrochloride | C24H29ClN4O4

Temanogrel hydrochloride

  • Molecular FormulaC24H29ClN4O4
  • Average mass472.965
957466-27-2 CAS
Benzamide, 3-methoxy-N-[3-(1-methyl-1H-pyrazol-5-yl)-4-[2-(4-morpholinyl)ethoxy]phenyl]-, hydrochloride (1:1) [ACD/Index Name]
Temanogrel hydrochloride [USAN]
UNII:5QEY8NZP3T
Temanogrel, also known as APD791, is a highly selective 5-hydroxytryptamine2A receptor inverse agonist under development for the treatment of arterial thrombosis. APD791 displayed high-affinity binding to membranes (K(i) = 4.9 nM) and functional inverse agonism of inositol phosphate accumulation (IC(50) = 5.2 nM) in human embryonic kidney cells stably expressing the human 5-HT(2A) receptor. APD791 was greater than 2000-fold selective for the 5-HT(2A) receptor versus 5-HT(2C) and 5-HT(2B) receptors. APD791 inhibited 5-HT-mediated amplification of ADP-stimulated human and dog platelet aggregation (IC(50) = 8.7 and 23.1 nM, respectively)
Arterial thrombosis is the formation of a blood clot or thrombus inside an artery or arteriole that restricts or blocks the flow of blood and, depending upon location, can result in acute coronary syndrome or stroke. The formation of a thrombus is usually initiated by blood vessel injury, which triggers platelet aggregation and adhesion of platelets to the vessel wall. Treatments aimed at inhibiting platelet aggregation have demonstrated clear clinical benefits in the setting of acute coronary syndrome and stroke. Current antiplatelet therapies include aspirin, which irreversibly inhibits cyclooxygenase (COXa
Abbreviations: COX, cyclooxygenase; ADP, adenosine diphosphate; SAR, structure−activity relationship; hERG, human ether-a-go-go-related gene; CNS, central nervous system; 5-HT, serotonin; AUC, area under the plasma concentration time curve, iv, intravenous; IP, inositol phosphate.
) and results in reduced thromboxane production, clopidogrel and prasugrel, which inhibit platelet adenosine diphosphate (ADP) P2Y12 receptors, and platelet glycoprotein IIb/IIIa receptor antagonists. Another class of antiplatelet drugs, protease-activated thrombin receptor (PAR-1) antagonists, are also being evaluated in the clinic for the treatment of acute coronary syndrome. The most advanced candidate in this class, N-[(1R,3aR,4aR,6R,8aR,9S,9aS)-9-{2-[5-(3-fluorophenyl)pyridin-2-yl]vinyl}-1-methyl-3-oxoperhydro-naphtho[2,3-c]furan-6-yl]-carbamic acid ethyl ester (SCH-530348), is currently in phase 3 trials for the prevention of arterial thrombosis.
The 5-HT2A receptor is one of 15 different serotonin receptor subtypes.
 In the cardiovascular system, modulation of 5-HT2A receptors on vascular smooth muscle cells and platelets is thought to play an important role in the regulation of cardiovascular function. Platelets are activated by a variety of agonists such as ADP, thrombin, thromboxane, serotonin, epinephrine, and collagen. Upon platelet activation at the site of blood vessel injury, a number of factors including serotonin (5-HT) are released. Although by itself serotonin is a weak activator of platelet aggregation, in vitro it can amplify aggregation induced by other agonists as mentioned above. Therefore, serotonin released from activated platelets may induce further platelet aggregation and enhance thrombosis.
The 5-HT2A receptor antagonist ketanserin  was shown in clinical studies to reduce early restenosis(7) and decrease myocardial ischemia during coronary balloon angioplasty.(8)However, in another study, ketanserin did not significantly improve clinical outcomes, and the rate of adverse events was higher than that observed in the control group.(9) Some of the adverse events reported in the latter study could be specific to ketanserin and resulted from its lack of 5-HT2A receptor selectivity. Other 5-HT2A antagonists with improved selectivity profiles have shown promise in clinical studies. For example, sarpogrelate  was shown to inhibit restenosis following coronary stenting.
Figure
Figure 1. Serotonin and known 5-HT2A receptor antagonists.
Because the 5-HT2A receptor is expressed both in peripheral tissues and in the central nervous system (CNS), compounds with limited CNS partitioning would be preferred to maximize cardiovascular and blood platelet pharmacological activity while minimizing CNS effects. In addition, because 5-HT2A receptor inverse agonists are thought to reduce thrombus formation via inhibition of serotonin-mediated amplification of platelet aggregation without inhibiting agonist driven aggregation per se, it is possible that this class of inhibitors will have an improved bleeding risk side effect profile compared to what has been observed with other classes of antithrombotic drugs.
SYNTHESIS 
PAPER
Journal of Medicinal Chemistry (2010), 53(11), 4412-4421.
http://pubs.acs.org/doi/abs/10.1021/jm100044a
Abstract Image
Serotonin, which is stored in platelets and is released during thrombosis, activates platelets via the 5-HT2A receptor. 5-HT2A receptor inverse agonists thus represent a potential new class of antithrombotic agents. Our medicinal program began with known compounds that displayed binding affinity for the recombinant 5-HT2A receptor, but which had poor activity when tested in human plasma platelet inhibition assays. We herein describe a series of phenyl pyrazole inverse agonists optimized for selectivity, aqueous solubility, antiplatelet activity, low hERG activity, and good pharmacokinetic properties, resulting in the discovery of 10k (APD791). 10k inhibited serotonin-amplified human platelet aggregation with an IC50 = 8.7 nM and had negligible binding affinity for the closely related 5-HT2B and 5-HT2C receptors. 10k was orally bioavailable in rats, dogs, and monkeys and had an acceptable safety profile. As a result, 10k was selected further evaluation and advanced into clinical development as a potential treatment for arterial

Discovery and Structure−Activity Relationship of 3-Methoxy-N-(3-(1-methyl-1H-pyrazol-5-yl)-4-(2-morpholinoethoxy)phenyl)benzamide (APD791): A Highly Selective 5-Hydroxytryptamine2A Receptor Inverse Agonist for the Treatment of Arterial Thrombosis

Arena Pharmaceuticals, 6166 Nancy Ridge Drive, San Diego, California 92121
J. Med. Chem., 2010, 53 (11), pp 4412–4421
DOI: 10.1021/jm100044a
Publication Date (Web): May 10, 2010
Copyright © 2010 American Chemical Society
*To whom correspondence should be addressed. Phone: +1 858-453-7200. Fax: +1 858-453-7210. E-mail:yxiong@arenapharm.com.
3-Methoxy-N-[3-(2-methyl-2H-pyrazol-3-yl)-4-(2-morpholin-4-yl-ethoxy)-phenyl]-benzamide (10k)
10k was prepared in a manner similar to that described for 10c, using 9d (120 mg, 0.40 mmol) and 3-methoxybenzoyl chloride (81 mg, 0.48 mmol) to give the TFA salt of 10k as a white solid (88 mg, 51%); mp (HCl salt, recrystallized from iPrOH) 214−216 °C. 1H NMR (acetone-d6, 400 MHz) δ: 2.99−3.21 (m, 2H), 3.22−3.45 (m, 2H), 3.66 (t, J = 4.8 Hz, 2H), 3.75 (s, 3H), 3.85 (s, 3H), 3.79−3.89 (m, 4H), 4.58 (t, J = 4.8 Hz, 2H), 6.29 (d, J = 2.0 Hz, 1H), 7.13 (dd, J = 2.5, 8.3 Hz, 1H), 7.22 (d, J = 8.8 Hz, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.47 (d, J = 1.7 Hz, 1H), 7.52 (t, J = 1.7 Hz, 1H), 7.56 (d, J = 7.0 Hz, 1H), 7.80−7.83 (m, 1H), 7.91−7.96 (m, 1H), 9.54 (s, 1H). LCMSm/z = 437.5 [M + H]+.

Additional Information

Oral administration of APD791 to dogs resulted in acute (1-h) and subchronic (10-day) inhibition of 5-HT-mediated amplification of collagen-stimulated platelet aggregation in whole blood. Two active metabolites, APD791-M1 and APD791-M2, were generated upon incubation of APD791 with human liver microsomes and were also indentified in dogs after oral administration of APD791. The affinity and selectivity profiles of both metabolites were similar to APD791. These results demonstrate that APD791 is an orally available, high-affinity 5-HT(2A) receptor antagonist with potent activity on platelets and vascular smooth muscle.(http://www.ncbi.nlm.nih.gov/pubmed/19628629).   PATENT WO 2006055734 https://google.com/patents/WO2006055734A2?cl=en Example 1.88: Preparation of 3-methoxy-N-[3-(2-methyl-2H-pyrazol-3-yl)-4-(2-morpholin~ 4-yl-ethoxy)-phenyl]-benzamide (Compound 733).
Figure imgf000151_0002
A mixture of 3-(2-methyl-2H-pyrazol-3-yl)-4-(2-morpholin-4-yl-ethoxy)-phenylamine (120 mg, 0.40 mmole), 3-methoxy-benzoyl chloride (81 mg, 0.48 mmole), and triethylamine (0.1 mL, 0.79 mmole) in 5 mL THF was stirred at room temperature for 10 minutes. The mixture was purified by HPLC to give the title compound as a white solid (TFA salt, 88 mg, 51 %). 1H NMR ( Acetone-^, 400 MHz) 2.99-3.21 (m, 2H), 3.22-3.45 (m, 2H), 3.66 (t, J= 4.80 Hz, 2H), 3.75 (s, 3H), 3.85 (s, 3H), 3.79-3.89 (m, 4H), 4.58 (t, J= 4.80 Hz, 2H), 6.29 (d, J= 2.02 Hz IH), 7.13 (dd, J= 8.34, 2.53 Hz, IH), 7.22 (d, J= 8.84 Hz, IH), 7.42 (t, J= 7.83 Hz, IH), 7.47 (d, J= 1.77 Hz, IH), 7.52 (t, J= 1.77 Hz, IH), 7.56 (d, J= 7.07 Hz, IH), 7.80-7.83 (m, IH), 7.91-7.96 (m, IH), 9.54 (s, NH). Exact mass calculated for C24H28N4O4 436.2, found 437.5 (MH+).

References

1: Xiong Y, Teegarden BR, Choi JS, Strah-Pleynet S, Decaire M, Jayakumar H, Dosa PI, Casper MD, Pham L, Feichtinger K, Ullman B, Adams J, Yuskin D, Frazer J, Morgan M, Sadeque A, Chen W, Webb RR, Connolly DT, Semple G, Al-Shamma H. Discovery and structure-activity relationship of 3-methoxy-N-(3-(1-methyl-1H-pyrazol-5-yl)-4-(2-morpholinoethoxy)phenyl)benzamide (APD791): a highly selective 5-hydroxytryptamine2A receptor inverse agonist for the treatment of arterial thrombosis. J Med Chem. 2010 Jun 10;53(11):4412-21. doi: 10.1021/jm100044a. PubMed PMID: 20455563. 2: Przyklenk K, Frelinger AL 3rd, Linden MD, Whittaker P, Li Y, Barnard MR, Adams J, Morgan M, Al-Shamma H, Michelson AD. Targeted inhibition of the serotonin 5HT2A receptor improves coronary patency in an in vivo model of recurrent thrombosis. J Thromb Haemost. 2010 Feb;8(2):331-40. doi: 10.1111/j.1538-7836.2009.03693.x. Epub 2009 Nov 17. PubMed PMID: 19922435; PubMed Central PMCID: PMC2916638. 3: Adams JW, Ramirez J, Shi Y, Thomsen W, Frazer J, Morgan M, Edwards JE, Chen W, Teegarden BR, Xiong Y, Al-Shamma H, Behan DP, Connolly DT. APD791, 3-methoxy-n-(3-(1-methyl-1h-pyrazol-5-yl)-4-(2-morpholinoethoxy)phenyl)benzamide, a novel 5-hydroxytryptamine 2A receptor antagonist: pharmacological profile, pharmacokinetics, platelet activity and vascular biology. J Pharmacol Exp Ther. 2009 Oct;331(1):96-103. doi: 10.1124/jpet.109.153189. Epub 2009 Jul 23. PubMed PMID: 19628629.
Patent ID Date Patent Title
US2015361031 2015-12-17 STAT3 INHIBITOR
US8785441 2014-07-22 3-phenyl-pyrazole derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US2013296321 2013-11-07 CRYSTALLINE FORMS AND PROCESSES FOR THE PREPARATION OF PHENYL-PYRAZOLES USEFUL AS MODULATORS OF THE 5-HT2A SEROTONIN RECEPTOR
US2012252813 2012-10-04 CRYSTALLINE FORMS OF CERTAIN 3-PHENYL-PYRAZOLE DERIVATIVES AS MODULATORS OF THE 5-HT2A SEROTONIN RECEPTOR USEFUL FOR THE TREATMENT OF DISORDERS RELATED THERETO
US8148417 2012-04-03 PRIMARY AMINES AND DERIVATIVES THEREOF AS MODULATORS OF THE 5-HT2A SEROTONIN RECEPTOR USEFUL FOR THE TREATMENT OF DISORDERS RELATED THERETO
US8148418 2012-04-03 ETHERS, SECONDARY AMINES AND DERIVATIVES THEREOF AS MODULATORS OF THE 5-HT2A SEROTONIN RECEPTOR USEFUL FOR THE TREATMENT OF DISORDERS RELATED THERETO
US2011105456 2011-05-05 3-PHENYL-PYRAZOLE DERIVATIVES AS MODULATORS OF THE 5-HT2A SEROTONIN RECEPTOR USEFUL FOR THE TREATMENT OF DISORDERS RELATED THERETO
US7884101 2011-02-08 3-Phenyl-pyrazole derivatives as modulators of the 5-HT2a serotonin receptor useful for the treatment of disorders related thereto
US2010234380 2010-09-16 CRYSTALLINE FORMS AND PROCESSES FOR THE PREPARATION OF PHENYL-PYRAZOLES USEFUL AS MODULATORS OF THE 5-HT2A SEROTONIN RECEPTOR
US2007244086 2007-10-18 3-Phenyl-Pyrazole Derivatives as Modulators of the 5-Ht2A Serotonin Receptor Useful for the Treatment of Disorders Related Thereto
///////////APD-791 , 887936-68-7, Temanogrel , PHASE 1, ARENA,
CN1C(=CC=N1)C2=C(C=CC(=C2)NC(=O)C3=CC(=CC=C3)OC)OCCN4CCOCC4
C(=O)(c1cc(ccc1)OC)Nc1ccc(c(c1)c1n(ncc1)C)OCCN1CCOCC1

Thursday, 9 June 2016

Gilteritinib

Gilteritinib
ASP-2215
Treatment of Acute Myeloid Leukemia
6-ethyl-3-{3-methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]anilino}-5-[(oxan-4-yl)amino]pyrazine-2-carboxamide
C29H44N8O3, 552.71
Phase III
A FLT3/AXL inhibitor potentially for the treatment of acute myeloid leukemia.
CAS No. 1254053-43-4
Astellas Pharma  INNOVATOR
Mechanism Of ActionAxl receptor tyrosine kinase inhibitors, Fms-like tyrosine kinase 3 inhibitors, Proto oncogene protein c-kit inhibitors
Who Atc CodesL01X-E (Protein kinase inhibitors)
Ephmra CodesL1H (Protein Kinase Inhibitor Antineoplastics)
IndicationCancer, Hepatic impairment
Gilteritinib(ASP-2215) is a potent FLT3/AXL inhibitor with IC50 of 0.29 nM/<1 nM respectively; shows potent antileukemic activity against AML with either or both FLT3-ITD and FLT3-D835 mutations.
IC50 value: 0.29 nM(FLT3); <1 nM(Axl kinase)
Target: FLT3/AXL inhibitor
ASP2215 inhibited the growth of MV4-11 cells, which harbor FLT3-ITD, with an IC50 value of 0.92 nM, accompanied with inhibition of pFLT3, pAKT, pSTAT5, pERK, and pS6. ASP2215 decreased tumor burden in bone marrow and prolonged the survival of mice intravenously transplanted with MV4-11 cells. ASP2215 may have potential use in treating AML.

SYNTHESIS

STR1

Patent
Compound A is 6-ethyl-3 - ({3-methoxy-4- [4- (4-methylpiperazin-1-yl) piperidin-1-yl] phenyl} amino) -5- a (tetrahydro -2H- pyran-4-ylamino) pyrazine-2-carboxamide, its chemical structure is shown below.
[Formula 1]

Gilteritinib fumarate

1254053-84-3.png

2D chemical structure of 1254053-84-3

Gilteritinib fumarate [USAN]

RN: 1254053-84-3

UNII: 5RZZ0Z1GJT

2-Pyrazinecarboxamide, 6-ethyl-3-((3-methoxy-4-(4-(4-methyl-1-piperazinyl)-1-piperidinyl)phenyl)amino)-5-((tetrahydro-2H-pyran-4-yl)amino)-, (2E)-2-butenedioate (2:1)

  • ASP-2215 hemifumarate
  • Molecular Formula, 2C29-H44-N8-O3.C4-H4-O4, Molecular Weight, 1221.5108

Astellas Inititaties Phase 3 Registration Trial of gilteritinib (ASP2215) in Relapsed or Refractory Acute Myeloid Leukemia Patients

gilteritinib-ASP2215
TOKYO, Japan I October 28, 2015 I Astellas Pharma Inc. (TSE:4503) today announced dosing of the first patient in a randomized Phase 3 registration trial of gilteritinib (ASP2215)versus salvage chemotherapy in patients with relapsed or refractory (R/R) acute myeloid leukemia (AML). The primary endpoint of the trial is overall survival (OS).
Gilteritinibis a receptor tyrosine kinase inhibitor of FLT3 and AXL, which are involved in the growth of cancer cells. Gilteritinibhas demonstrated inhibitory activity against FLT3 internal tandem duplication (ITD) as well as tyrosine kinase domain (TKD), two common types of FLT3 mutations that are seen in up to one third of patients with AML.
The gilteritinib Phase 3 trial follows a Phase 1/2 trial, which evaluated doses from 20 to 450 mg once daily. A parallel multi-dose expansion cohort was initiated based on the efficacy seen in the dose escalation phase. Preliminary data from the Phase 1/2 trial presented at the 2015 American Society of Clinical Oncology annual meeting demonstrated a 57.5 percent overall response rate and a 47.2 percent composite Complete Response (CR) rate (CR + CR with incomplete platelet recovery + CR with incomplete hematologic recovery) in 106 patients with FLT3 mutations who received 80 mg and higher doses. Median duration of response was 18 weeks across all doses and median OS was approximately 27 weeks at 80 mg and above in FLT3 mutation positive patients. Common drug-related adverse events (> 10%) observed in the study were diarrhea (13.4%), fatigue (12.4%) and AST increase (11.3%). At the 450 mg dose, two patients reached dose-limiting toxicity (grade 3 diarrhea and ALT/AST elevation) and the maximum tolerated dose was determined to be 300 mg.
On October 27, 2015, the Japanese Ministry of Health, Labor and Welfare (MHLW) announced the selection of gilteritinib as one of the first products designated for SAKIGAKE.
About the Phase 3 Study
The Phase 3 trial is an open-label, multicenter, randomized study of gilteritinib versus salvage chemotherapy in patients with Acute Myeloid Leukemia (AML). The study will enroll 369 patients with FLT3 activating mutation in bone marrow or whole blood, as determined by central lab, AML who are refractory to or have relapsed after first-line AML therapy. Subjects will be randomized in a 2:1 ratio to receive gilteritinib (120 mg) or salvage chemotherapy consisting of LoDAC (low-dose cytarabine), azacitidine, MEC (mitoxantrone, etoposide, and intermediate-dose cytarabine), or FLAG-IDA (fludarabine, cytarabine, and granulocyte colony-stimulating factor with idarubicin). The primary endpoint of the trial is OS. For more information about this trial go to www.clinicaltrials.gov, trial identifier NCT02421939.
Gilteritinib was discovered through a research collaboration with Kotobuki Pharmaceutical Co., Ltd., and Astellas has exclusive global rights to develop, manufacture and potentially commercialize gilteritinib.
About Acute Myeloid Leukemia
Acute myeloid leukemia is a cancer that impacts the blood and bone marrow and most commonly experienced in older adults. According to the//www.cancer.org/acs/groups/content/@editorial/documents/document/acspc-044552.pdf” target=”_blank” rel=”nofollow”>American Cancer Society, in 2015, there will be an estimated 20,830 new cases of AML diagnosed in the United States, and about 10,460 cases will result in death.
About SAKIGAKE
The SAKIGAKE designation system can shorten the review period in the following three approaches: 1.) Prioritized Consultation 2.) Substantial Pre-application Consultation and 3.) Prioritized Review. Also, the system will promote development with the following two approaches: 4.) Review Partner System (to be conducted by the Pharmaceuticals and Medical Devices Agency) and 5.) Substantial Post-Marketing Safety Measures.
About Astellas
Astellas Pharma Inc., based in Tokyo, Japan, is a company dedicated to improving the health of people around the world through the provision of innovative and reliable pharmaceutical products. We focus on Urology, Oncology, Immunology, Nephrology and Neuroscience as prioritized therapeutic areas while advancing new therapeutic areas and discovery research leveraging new technologies/modalities. We are also creating new value by combining internal capabilities and external expertise in the medical/healthcare business. Astellas is on the forefront of healthcare change to turn innovative science into value for patients. For more information, please visit our website at www.astellas.com/en.
SOURCE: Astellas Pharma
////////1254053-43-4, Gilteritinib, ASP-2215, PHASE 3, ASP 2215, Astellas Pharma, Acute Myeloid Leukemia
CCc1c(nc(c(n1)C(=O)N)Nc2ccc(c(c2)OC)N3CCC(CC3)N4CCN(CC4)C)NC5CCOCC5
CCc1c(nc(c(n1)C(=O)N)Nc2ccc(c(c2)OC)N3CCC(CC3)N4CCN(CC4)C)NC5CCOCC5.CCc1c(nc(c(n1)C(=O)N)Nc2ccc(c(c2)OC)N3CCC(CC3)N4CCN(CC4)C)NC5CCOCC5.C(=C/C(=O)O)\C(=O)O